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Rotating gravity currents. Part 2.
Potential vorticity theory
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An extension to the energy-conserving theory of gravity currents in rectangular
rotating channels is presented, in which an upstream potential vorticity boundary
condition in the current is applied. It is assumed that the fluid is inviscid; that the
Boussinesq approximation applies; that the fundamental properties of momentum,
energy, volume flux and potential vorticity are conserved between upstream and
downstream locations; and that the flow is dissipationless. The upstream potential
vorticity in the current is set through the introduction of a new parameter δ, that
defines the ratio of the reference depth of the current to the ambient fluid. Flow types
are established as a function δ and the rotation rate, and a fourth flow geometry is
identified in addition to the three previously identified for rotating gravity currents.
Detailed solutions are obtained for three cases δ = 0.5, 1.0 and 1.5, where δ < 1 is
relevant to currents originating from a shallow source and δ > 1 to currents where
the source region is deeper than the downstream depth, for example where a deep
ocean flow encounters a plateau. The governing equations and solutions for each case
are derived, quantifying the flow in terms of the depth, width and front speed. Cross-
stream velocity profiles are provided for both the ambient fluid and the current. These
predict the evolution of a complex circulation within the current as the rotation rate
is varied. The ambient fluid exhibits similar trends to those predicted by the energy-
conserving theory, with the Froude number tending to

√
2 at the right-hand wall at

high rotation rates. The introduction of the potential vorticity boundary condition
into the energy-conserving theory does not appear to have a substantial effect on the
main flow parameters (such as current speed and width); however it does provide an
insight into the complex dynamics of the flow within the current.

1. Introduction
This is the second of two papers examining the dynamics of gravity currents in rotat-

ing fluids. Hacker (1996) developed a model in which the current was considered to be
a cavity around which the ambient fluid flowed, and the ambient fluid was assumed to
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conserve energy and potential vorticity. Following the approach of Benjamin (1968)
for non-rotating flows, Martin & Lane-Serff (2004) extended Hacker’s theory to allow
for energy loss in the ambient fluid. The model developed in that paper, which forms
the first part of this study and hereafter is referred to as Part 1, does not consider
flow within the current.

In the present paper we develop a theory which allows for flow within the gravity
current (though it does not allow for energy loss). There are two reasons for extending
the model in this way: first, to obtain a description of the expected flow within the
current; and, second, to examine whether the flow within the current has a significant
effect on the propagation of the current.

In considering the limitations of his energy-conserving theory Hacker noted that
the potential vorticity distribution in the current was not prescribed but was instead
determined by the solution for a particular level of rotation, W . He conjectured
that an upstream potential vorticity boundary condition could be included if the
constraints of conservation of volume flux and potential vorticity within the current
are met. These can be expressed as ∫

S

uc(y) dS = 0, (1.1)∫
S

uc(y)qc(y) dS = 0, (1.2)

where uc and qc are the alongstream velocity and the potential vorticity of the current,
and the surface S is a cross-section through the current in the (y, z)-plane.

For lock-release experiments in which fluid is released from an initially stationary
and uniform-depth reservoir, the potential vorticity of the current is uniform, and we
will consider this case in the following analysis. The ambient and gravity current fluids
are coupled by Magule’s balance at the interface, and so allowing a non-zero velocity
in the current modifies the ambient flow too. The cross-stream flow structure of
two-layer flows with uniform potential vorticity has been derived by authors studying
geostrophic adjustment (e.g. van Heijst 1985; Casandy 1971, 1978; Stommel & Veronis
1980; Ou 1983; and Hsueh & Cushman-Roisin 1983). The flow is the solution of
a second-order differential equation. In the problem of geostrophic adjustment the
two constants in the solution are determined from the conservation of mass and of
angular momentum. In this paper we derive alternative conditions appropriate for a
steady-state gravity current. In § 2 this method is applied to give the general solution
for the depth of the interface. Governing equations are then derived for each of the
flow geometries. The numerical solutions are presented in § 3 and finally in § 4 the
results are discussed.

2. The model
2.1. Outline

The derivation is divided into three stages. In stage 1, conservation of potential
vorticity for the ambient fluid and the current is considered. The equations are non-
dimensionalized and a new parameter, the ratio δ = Hc/H , is introduced, where Hc is
the depth of the current fluid in an upstream stationary reservoir. Thus we assume
that the potential vorticity in the current is uniform, and is effectively described by
the value of f/Hc. Next, the Margules equation is used to determine the relationship
between the slope of the interface between the two layers and the velocity jump across
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Figure 1. (a) Sketch of a rotating gravity current in a channel of width D and height
H , with the (dimensional) interface depth η∗. (b) Sketches of the four flow geometries (in
non-dimensional form), which depend on which boundaries the interface intersects.

the interface. From these, general solutions defining the structure of the flow in terms
of five parameters are obtained: uc(0), the downstream velocity of the current at the
right-hand wall; uD(0), the downstream velocity of the ambient fluid at the right-hand
wall; η0, the depth of the current at the right-hand wall; c, the speed of translation
of the reference frame; and p0, the upstream pressure in the ambient fluid.

In stage 2, conservation of the fundamental properties energy, mass and momentum
between up- and downstream cross-sections are considered. Finally, in stage 3 these
conditions are applied to each of the four flow geometries illustrated in figure 1 (there
is an extra geometry compared with those described in Part 1, discussed further in
§ 2.4). This results in a complex set of simultaneous equations for each case. Note
that the assumptions made in the earlier energy-conserving theory of rotating gravity
currents are still applicable with the exception that a recirculating flow is allowed
within the current. The adjustment of the current from the initial source conditions
is assumed to be inviscid, with no energy loss in the current, hence potential vorticity
is conserved.
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Basic scales

The main features of a rotating gravity current in a rectangular channel are illu-
strated in figure 1. Most of the parameters and variables are similar to those in Part 1.
Thus the parameters and variables in the model are defined and non-dimensionalized
as follows. The dimensional variables are marked with an asterisk. Vectors are in
bold type. The subscripts c and a refer to the current and ambient fluid respectively,
with U the upstream and D the downstream locations. The subscript 0 specifies a
variable measured at the right-hand wall, which is therefore a constant. Where a
symbol appears only once, it is defined in the text.

The reduced gravity is given by g′ = g�ρ/ρa where �ρ = ρa − ρc, the channel width
is D, the channel depth H , and the Coriolis parameter f . We define a Rossby radius
in terms of the total channel depth R = f/(g′H )1/2. The aspect ratio of the channel
is denoted by λH = H/D, and we also define a density ratio ρ = ρ∗

c /ρ
∗
a = 1 − �ρ∗/ρ∗

a .
For Boussinesq flow we can take ρ = 1. We non-dimensionalize distances and speeds
as follows:

horizontal lengths x = x∗/D, y = y∗/D,

vertical lengths z = z∗/H, η = η∗/H,

velocities u = u∗/(g′H )1/2,

velocity of the leading edge c = c∗/(g′H )1/2,

pressure p = (p∗ − ρ∗
agz∗)/(ρ∗

ag
′H ).




(2.1)

Note that in addition to scaling the pressure term we also remove a hydrostatic com-
ponent. An important parameter is the strength of the rotation; this is characterized
by the ratio of the width of the channel to the Rossby radius of deformation:
W = f D/(g′H )1/2.

There is an extra dimensional parameter compared with Part 1: Hc, the reference
depth that specifies the potential vorticity for the current. This leads to a corresponding
non-dimensional parameter,

δ = Hc/H. (2.2)

As in Part 1, the solution is independent of the aspect ratio (λ) and the density ratio
(ρ). In the present model, the solution is dependent on the strength of rotation W

and the potential vorticity ratio δ. Below we show that an alternative description of
the strength of rotation is useful, represented by the parameter W ′ (see § 2.2).

2.2. Stage 1 – Downstream flow structure

Conservation of potential vorticity

As in Part 1, the ambient fluid upstream of the current head is assumed to be
motionless, so that in the frame of reference moving with the current head the
upstream ambient flow is uniform with velocity -c along the channel. In this subsection
we consider a section far downstream where the flow is parallel to the channel so that

uc = (uc(y, z), 0, 0) (2.3)

and

ua = (ua(y, z), 0, 0). (2.4)

The subscript a, refers to the ambient fluid, which can be further divided into the
ambient fluid up and downstream, by the subscripts U and D respectively. The
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subscript c refers to the current. Since the flow in the current is recirculating uc may
take either sign, while the ambient flow is always negative.

Conservation of potential vorticity in the current and the ambient fluid imply that

f − (duc/dy)

η
=

f

Hc

(2.5)

and
f − (duD/dy)

H − η
=

f

H
. (2.6)

Non-dimensionalizing (2.5) and (2.6) gives, for the current

duc

dy
= W (1 − η/δ), (2.7)

and for the ambient fluid
duD

dy
= Wη. (2.8)

Geostrophic equations and Margules relationship

To remove the hydrostatic pressure variation with depth in the current, pc may be
written as

pc = Pc + (z − 1). (2.9)

The non-dimensionalized momentum equations for the current (Part 1: (2.8)) and
the ambient fluid (Part 1: (2.9)) are still applicable. Applying the Boussinesq
approximation (ρ = 1) and (2.9) the geostrophic relationship for the current becomes

dpc

dy
=

dPc

dy
= −W (uc + c). (2.10)

For the ambient fluid the new sign convention (2.3) implies

dpD

dy
= −W (uD + c). (2.11)

Since the pressure is continuous at the interface between the two fluids where z = 1−η,
this implies that

pD = Pc − η. (2.12)

Differentiating (2.12) and substituting (2.10) and (2.11) gives the Margules (1906)
relationship, where the slope of the interface between the two fluids is given by the
difference in velocity across the interface

uc − uD = −W −1dη/dy. (2.13)

Flow structure equations

The general solution for η(y) is derived by first differentiating (2.13) with respect
to y, and substituting (2.7) and (2.8) to give

−W 2 = d2η/dy2 − W ′2η, (2.14)

where

W ′2 = W 2(1 + δ)/δ =
f 2D2(H + Hc)

g′HHc

.
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Note that when we consider the flow in the current the lengthscale for the cross-stream
structure is changed from 1/W in Part 1 to 1/W ′.

Equation (2.14) is only valid for 0 <η < 1; however the interface may intersect
the surface or the bottom of the channel. We define the location at which the
interface intersects the bottom as y = b, with b =0 if the interface does not intersect
the bottom (i.e. η < 1 at y =0). Similarly we define y = d as the location where the
interface intersects the upper surface, with d = 1 if the interface does not intersect the
surface (i.e. η > 0 at y = 1). The general solution of (2.14) in b < y <d is

η(y) = δ/(1 + δ) + A coshW ′(y − b) + B sinhW ′(y − b), (2.15)

where A and B are constants of integration which are solved subsequently. The general
solutions for uc(y) and uD(y) are obtained by substituting (2.15) into (2.7) and (2.8)
respectively to give

uc(y) = E + W (δ/(1 + δ))y − (W/δW ′)[A sinh W ′(y − b) + B coshW ′(y − b)] (2.16)

and

uD(y) = F + W (δ/(1 + δ))y + (W/W ′)[A sinh W ′(y − b) + B coshW ′(y − b)]. (2.17)

Subtracting (2.17) from (2.16) and equating with (2.13) shows that the two constants
in (2.16) and (2.17) are equivalent, i.e. E =F . Returning to the constants A and B in
the above equations these are obtained by considering the solutions of (2.5) at y = b.
Hence, (2.15) becomes

A = η(b) − (δ/(1 + δ)). (2.18)

The constant B is obtained by subtracting the solution at y = b of (2.17) from the
solution at y = b of (2.16) which gives

B = −W/W ′(uc(b) − uD(b)). (2.19)

Substituting the expressions for the constants A (2.18) and B (2.19) into the general
solutions (2.16) and (2.17) and evaluating them at y = b enables the remaining constant
F to be determined, where

E = F = uc(b) − (W 2/δW ′2)(uc(b) − uD(b)) = uD(b) + (W 2/W ′2)(uc(b) − uD(b))

= uc(b) − (1 + δ)−1(uc(b) − uD(b)). (2.20)

Substituting the expressions for the coefficients A and B into (2.15) enables the general
solution for η(y) to be written as

η(y) = δ/(1 + δ) + (η(b) − δ/(1 + δ)) coshW ′(y − b)

+ ((−W/W ′)(uc(b) − uD(b))) sinh W ′(y − b). (2.21)

Thus the structure of the flow is defined in terms of its depth and the respective
velocities of the current and the ambient fluid at y = b. However, we also need to
consider what happens when the interface intersects the upper or lower boundaries.
Setting η = 0 in (2.15) we find that the interface intersects the upper boundary at
y = d , given by

η(d) = 0 = δ/(1 + δ) + A coshW ′(d − b) + B sinhW ′(d − b) (2.22)

where A and B are the constants defined in (2.18) and (2.19). The value of b (where
it is greater than zero) has to be found indirectly through a Bernoulli equation (see
below).
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The flows in the current for 0 < y < b and in the ambient for d < y < 1 (i.e. where
the relevant fluid layer occupies the full depth of the channel) are found by applying
the conservation of potential vorticity (2.5 and 2.6, respectively) and continuity at
y = b and y = d . Thus if d < 1, then uD is constant for y > d , i.e. uD(y) = uD(d) for
d < y < 1, and if b > 0, then

uc(y) = uc(b) + W [(δ − 1)/δ](y − b) for 0 < y < b. (2.23)

Pressure equations

The pressure in each layer can be evaluated by integrating the geostrophic relations
(2.10) and (2.11) making use of the full expressions for the velocities (and noting that
(δ/(1 + δ)) = W 2/W ′2) to give

Pc = k + 1 − Wcy − W

[(
uc(0) −

(
W 2

δW ′2

)
(uc(0) − uD(0))

)
y + 1

2
W

(
δ

(1 + δ)

)
y2

−
(

W

δW ′2

) ((
η0 − δ

(1 + δ)

)
coshW ′(y − b)

+

((
−W

W ′

)
(uc(0) − uD(0))

)
sinhW ′(y − b)

)]
(2.24)

and

pD = k − Wcy − W

[(
uc(0) −

(
W 2

δW ′2

)
(uc(0) − uD(0))

)
y + 1

2
W

(
δ

(1 + δ)

)
y2

−
(

W

δW ′2

)((
η0 − δ

(1 + δ)

)
coshW ′(y − b)

+

((
−W

W ′

)
(uc(0) − uD(0))

)
sinhW ′(y − b)

)]
+ 1 − η. (2.25)

Note that there is an additional constant k. Thus the complete flow is described by five
parameters: uc(0), uD(0), η0 (or b if η0 = 1), k and c. To determine the values of these
constants we will apply conservation of energy and momentum. These constraints
will be discussed in the next section.

2.3. Stage 2 – Conservation of the fundamental properties

Conservation of energy

In Part 1, for the case in which the flow in the current uc = 0, two of the three
equations required to determine the flow were derived from consideration of the
conservation of energy in the ambient fluid. It can be shown that this applies equally
to the current fluid, and we will use it to derive two further equations necessary to
complete the problem, i.e. we will use the Bernoulli equations for the current and the
ambient

Bc = 1
2
|uc|2 + Pc(y) + Wcy = constant along streamlines,

Ba = 1
2
|ua|2 + Pa(y) + Wcy = constant along streamlines.

}
(2.26)

Applying the Bernoulli equation for the current along a streamline connecting the
forward stagnation point (0, 0, 1) to a point on the right-hand boundary downstream
in the current gives

Bc(0) = 0 = 1
2
uc(0)2 + Pc(0) (2.27)
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(defining the pressure at the stagnation point to be zero). Hence, the downstream
pressure in the current is quantified as

− 1
2
uc(0)2 = Pc(0). (2.28)

This then determines the value of k (see Appendix A), giving the first in our set of
equations. To obtain the value of Bc(d), first (2.26) is differentiated and use is made
of the geostrophic and the potential vorticity equations (2.10) and (2.7) respectively
to give

dBc

dy
=

−Wηuc

δ
.

Integrating the above expression and making use of condition (1.1), that states that
there is no flux of fluid into or out of the current, gives

Bc(d) − Bc(0) = −W

δ

∫ d

0

uc(y)η(y) dy = −W

δ
[Qc(y)]d0 = 0. (2.29)

According to (2.28) Bc(0) = 0, which implies that Bc(d) = 0, therefore (2.29) becomes

Bc(d) = 1
2
uc(d)2 + Pc(d) + Wcd = 0. (2.30)

Alternatively (2.30) could have been derived by considering a streamline originating at
the forward stagnation point and extending along the outer edge of the current. Thus
we see that the conservation of volume does not provide any additional information
over that which can be obtained from the Bernoulli equation.

Hence, we have derived two Bernoulli equations (2.27) and (2.30) for the current.
Two equations for the ambient can be derived by following a similar analysis to that
in Part 1, giving

BD(b) = 0 = 1
2
u2

D(b) + pD(b) + Wcb, (2.31)

and

BD(1) = Wc = 1
2
u2

D(1) + pD(1) + Wc. (2.32)

In cases A and B (see figure 1) where b = 0, BD(0) becomes

BD(0) = 1
2
uD(0)2 + pD(0).

Applying (2.12) at b = 0 and making use of (2.28) gives

η0 = 1
2
uD(0)2 − 1

2
uc(0)2. (2.33)

Next, integrating the relationship obtained in the derivation of (2.28), for case C
where y ∈ [0, b] yields

Bc(b) − Bc(0) = −W

δ

∫ b

0

uc(y)η(y) dy. (2.34)

Applying Bc(0) = 0 (2.27) and (2.7), (2.34) becomes

Bc(b) =
u2

c(b)

2(1 − δ)
− u2

c(0)

2(1 − δ)
. (2.35)

Equating (2.35) with (2.26) applied at y = b gives

− 1
2
u2

c(b)
δ

1 − δ
+ Pc(b) + Wcb +

1

2(1 − δ)
u2

c(0) = 0. (2.36)
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Substituting (2.12) into (2.31) and equating with (2.36) gives

− 1
2
u2

c(b)
δ

1 − δ
+

1

2(1 − δ)
u2

c(0) = 1
2
u2

D(b) − η(b). (2.37)

The integral of (2.7) for y ∈ [0, b] is

uc(b) − uc(0) = Wb ((δ − 1)/δ), (2.38)

which is substituted into (2.37) to give

1
2
u2

D(b) = 1
2
u2

c(b) +
Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
+ η(b). (2.39)

The relationship (2.39) defines uD(b) in terms of uc(b) and b, which can be further
defined in terms of η0, uc(0) and uD(0) for y = 0. Equation (2.39) forms the second
equation in the set of five necessary to complete the solution.

Next we derive an equation for the current speed, c, by considering Bernoulli
equations for the downstream flow in the ambient fluid. The derivation is similar to
that in Part 1 and is omitted here, but the full derivation is given in Appendix A. The
result is

c = W −1
[

1
2
uD(1)2 − 1

2
uc(d)2 + WUD(d − 1) − η(d)

]
(2.40)

Equation (2.40) is the third general equation required to close the problem. Note that
when uc =0 is substituted into (2.40) expressions are obtained for each of the cases
that are equivalent to those derived in the energy-conserving theory with simple flow.

Now the pressure difference across the current is considered. Again the details are
omitted here and the full derivation is given in Appendix A; the result is

1
2

(
u2

c(d) − u2
c(b)

)
=

(d − b)

(1 + δ)
(W (uD(b) + δuc(b)))

+
1

1 + δ

(
η(b) − η(d) + 1

2
W 2δ(d − b)2

)
+

Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
. (2.41)

This is the fourth in our set of four general equations derived from conservation of
energy.

Conservation of momentum

Conservation of momentum is evaluated as in § 2.2 of Part 1. The momentum
equations (Part 1: (2.8)) and (Part 1: (2.9)) are integrated over the rectangular volume
between the up- and downstream cross-sections. However, in this model the velocity
of the current is not assumed to equal zero and therefore must be included. The
divergence theorem is again used to express the advective and pressure terms as
surface integrals (note that at rigid boundaries u · n = 0∫

AU +Aa+Ac

u(u · n) dS +

∫
∂Va+∂Vc

pn dS = −
∫

Vc+Vc

Wkxu dV

− Wcj

∫
Va+Vc

dV + k
∫

Vc

dV. (2.42)

The volume V is bounded by ∂V with subscripts a and c referring to the ambient
fluid and current respectively. The up- and downstream faces of ∂V are AU and AD ,
where AD is composed of Ac and Aa . Considering the different components of (2.42),
one finds that the total Coriolis force acting in the i-direction is equivalent to the
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sum of the net fluxes of the momentum plus the pressure force acting on the wall in
the i-direction, where∫

AU

(
u2

u + pu

)
dA −

∫
Aa

(
u2

D + pD

)
dA −

∫
Ac

(
u2

c + pc

)
dA = W

∫
Va+Vc

v dV. (2.43)

Note that the expression for conservation of momentum derived in Part 1 has been
altered to include the non-zero velocity of the current. There now also exists an across-
stream velocity, vc, in the current. This induces a Coriolis force directed upstream
(for positive vc) with respect to the current, which acts to retard the current.

The j -component expresses the balance between the net pressure force on the
sidewalls, and the sum of the Coriolis force and the body force of translation. The
k-component represents the balance between the net pressure force on the top and
bottom walls, and the buoyancy force acting on the current. The j - and k-components
are not used in the analysis: the remaining unknowns are determined from the
i-component.

Using the fact that uU = − c and the substitution for the upstream pressure (Part 1:
A 1), expression (2.43), becomes

1
2
c2 =

∫
Ac

(
u2

c + pc

)
dA +

∫
Aa

(
u2

D + pD

)
dA + W

∫
Vc

vc dV + W

∫
Va

vD dV . (2.44)

The solution of (2.44) is quite complex. The solution method is broken down into a
number of steps summarized below, with the full details given in Appendix A.

Step 1: The integrals associated with first the current, and secondly the ambient fluid,
are reduced to single integrals.
Step 2: The terms used previously in Part 1 in deriving conservation of energy with
simple flow are then considered.
Step 3: The remaining terms for the current, which result from relaxing the zero
velocity assumption, are considered next.
Step 4: The terms derived in steps 2 and 3 are combined to produce a simplified
version of (2.44), which contains two single integrals.
Step 5: These are evaluated, where possible by substituting exact differentials and
making use of the Bernoulli equations, to produce the general solution for the
momentum integral.

After this manipulation (details in Appendix A), equation (2.44) can be reduced to

1
2
c2 =

∫ d

b

1
2
(−uc(uD + δuc)) dy +

1

W

[
δ2

6(1 − δ)
u3

c

]b

0

+

[
δ

6W
u3

c

]d

0

+
1

W

[
1

6
u3

D − 1
2
uDη − uDBD(y)

]d

b

+ 1
2
U 2

D(1 − d) − 1
2
b. (2.45)

To evaluate the integral in (2.45) it is necessary to substitute the expressions for the
flow structure and then integrate (see Appendix A).

Summary of the general form of the governing equations

The problem is now fully specified. There are five general equations: the momentum
integral (2.45) and four Bernoulli equations (2.28), (2.39), (2.40) and (2.41). For each
case the relevant boundary conditions b and d are found from equations (2.22) and
(2.24) and applied to these general equations. Next the flow structure equations (2.21),
(2.25) and (2.26) are substituted enabling the resulting equations to be expressed in
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Figure 2. Regime diagram showing the different flow types (found numerically) as functions
of the rotation strength W and PV ratio δ. The sketches are schematic representations of
the flows at the boundaries for the four main flow types (at these boundaries the interface
intersects a corner).

terms of the four variables, uc(b), uD(b), η(b) and c, which are thus functions of the
parameters W and δ. The four simultaneous equations can then be solved to find the
flow for any values of the parameters.

The flow geometries

The general form of the governing equations can now be applied to each of the flow
geometries, which are dependent upon the strength of the rotation (as sketched in
figure 1). Due to the complexity of the governing equations and the absence of a
simple relationship between uc(b) and uD(b), a numerical method is required to solve
the equations for each case. The detailed equations for each case, together with some
notes on their numerical solution, are given in Appendix B.

The numerical method was first applied to the three flow geometries identified in
Part 1. These are case A, weakly rotating flow with the interface intersecting both
sidewalls and thus b = 0, d =1; case B, flows of moderate rotation with the interface
outcropping on the surface and thus b = 0, d < 1; and case C, strongly rotating flows
with the interface outcropping on the lower and upper surface, and thus 0<b <d < 1.
From the numerical calculations it became clear that a fourth flow geometry was
possible, occurring at small values of δ and moderate values of W . This was labelled
case BII, and has the interface intersecting the left sidewall (looking downstream with
respect to the current) and the lower boundary, and thus has b > 0 and d = 1.

3. Results
The parameter range for which solutions were obtained is illustrated in figure 2,

showing the different flow geometries as functions of W and δ. Since the solutions are
forced to be energy-conserving, the predicted current depths are all of the order of
half the channel depth (recall that the non-rotating energy-conserving solution has a
current depth of exactly half the channel depth). As δ represents the upstream reservoir
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depth of the fluid in the gravity current, values of δ greater than approximately 0.5
represent flows where the depth of the fluid has decreased between the reservoir and
the current, leading to anticyclonic relative vorticity in the current. Conversely, values
of δ less than approximately 0.5 represent flows where the current has increased in
depth leading to cyclonic vorticity in the current. It is hard to envisage how a real flow
might increase in depth, so that the flows for small δ may not be physically realizable.
However, there may be other mechanisms which give rise to gravity currents with
cyclonic relative vorticity, so we discuss the behaviour at small δ first.

Small δ

The flow geometry BII is only found for values of δ < 0.27 and W < 2.3, and is
presumably associated with strongly cyclonic recirculating flow within the current.
At certain fixed values of δ it is possible to move through all the flow geometries
as W increases, in the order A, B, C, BII, C. This can be accomplished by both the
typical interface slope and the lower boundary intercept b increasing monotonically
with rotation rate W . The boundaries in parameter space between the cases all
have the interface intercepting the channel boundary at the top-left or bottom-right
corner (looking downstream with respect to the current). As the interface moves
away from the corner the flow becomes one of the four main cases. There is a point
in parameter space (at approximately δ = 0.19, W =0.9) which corresponds to the
interface intercepting the boundary at both corners. The boundaries on figure 2 were
determined by solving the flow at specific values of W and δ, and the positions
are estimated to be accurate to ± 0.005 in δ and ± 0.05 in W , though we have not
attempted to formally determine the behaviour as δ → 0.

Large δ

At larger values of δ, an increase in rotation rate W results in a progression through
the flow geometries found in Part 1, with only a weak dependence of the transition
values on the value of δ. Detailed solutions have been obtained for three cases where
δ =0.5, 1.0 and 1.5. In this theory the principle variables are a function of two
parameters, W and δ. Figure 3 shows the solutions for the front speed c as W is
increased, for each of the three values of δ.

One can see that the value of δ appears to have no significant effect upon the front
speed, with all of the solutions for c plotting close to the energy-conserving solution
of Hacker. In case A (weak rotation, 0 � W � 0.67), the current fills the full width of
the channel and the front speed is seen to increase approximately linearly. In case B,
(moderate rotation, 0.67 � W � 1.8) the current outcrops on the free surface and the
increase in c becomes more gradual. Finally, in case C (strong rotation, 1.8 � W � 3.0)
the current fills the full depth of the channel as c tends towards 1 at high rotation
rates.

An important aspect of this theory is that it provides solutions for the velocity
profile within the current, uc(y), which was assumed to be zero in the earlier theories.
To illustrate the solutions, velocity profiles for the current and the ambient fluid
are provided for each value of δ. The outer edge of the current is marked by +
and labelled with its respective value. Positive velocity is towards the nose of the
current whilst negative velocity is away from the nose. The interface profiles are also
included. The method used to contour the solutions is Delaunay Triangulation and
the data set contains more than 1500 data points. Figure 4 contains contour plots of
the across-stream current velocity, uc(y) for δ =0.5, 1.0 and 1.5.

For the case of δ = 0.5 the circulation within the current shows marked differences
to that seen for the other values of δ. At weak rotation rates the direction of flow
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Figure 3. Comparison of front speed, c, versus rotation rate, W , for each of the values of δ
and the energy-conserving theory of Hacker.

in the current at the right-hand wall is negative. Midway across the stream the
direction of the flow switches to positive, therefore an anticyclonic circulation has
developed. As the level of rotation is increased a more complex flow develops, with
a cyclonic flow next to the right-hand wall and an anticyclonic flow at the outer
edge of the current. The boundary between the two flows occurs at η(y) = 0.5, i.e.
δ = η(y). This can be explained by a simple physical argument in that the fluid has
undergone vortex stretching at the right-hand wall whilst at the outer edge of the
current the fluid has experienced vortex compression. The stretching of the vortex
lines requires that the water column has to take on additional cyclonic relative
vorticity to conserve its potential vorticity, whilst the compression requires additional
anticyclonic relative vorticity. Mathematically this behaviour is described by the
potential vorticity equation (2.7). When δ = η(y), as is the case when δ =0.5 and
η(y) = 0.5, then duc/dy =0. The second derivative of (2.7) is positive; therefore when
δ = η(y) = 0.5 there is a minimum value for uc. This can clearly be seen by comparing
figures 4(a) and 6(a).

On comparing the velocity uc(y) at y = d for each value of δ, the velocity is found to
increase at the outer edge of the current as δ is increased. However at the right-hand
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Figure 4. Velocity of the current (which varies across the width of the current) uc(y) for
δ = 0.5, 1.0 and 1.5, as a function of the rotation rate. The width of the current for each
rotation rate is denoted by crosses, with the value of the velocity at the current edge marked.

wall uc(0) decreases, hence there is an increase in the strength of the circulation as δ

becomes greater.
Figure 5 illustrates the flow in the ambient fluid, which is always in the negative

direction as one would expect. There is little variation in uD(y) as δ is varied and the
across-stream profiles are similar to that observed for the energy-conserving theory
of Hacker. At weak rotation rates uD is seen to increase in magnitude at the right-
hand wall. This is because the pressure at y = 0 is not a function of W and is
instead influenced by the increasing depth of the interface and uc(0). At high rotation
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Figure 5. Velocity of the ambient fluid uD(y) for δ = 0.5, 1.0 and 1.5, as a function of the
rotation rate.

rates uD(0) tends to −21/2. At the left-hand wall the pressure is a balance between the
hydrostatic and geostrophic pressure gradients. At weak rotation rates the hydrostatic
pressure is dominant and since the depth of the interface is decreasing at the left-hand
wall this results in an increase in pressure, which is associated with a deceleration of
the flow. As W increases further the influence of the geostrophic pressure gradient is
seen and in the free stream the ambient velocity is seen to increase, tending to −1.

The depth profiles for each of the values of δ are shown in figure 6. These profiles
are very similar, with the only discernible difference being the slight increase in the
width of the current for δ = 0.5.

4. Summary and discussion
To summarize, the effects of introducing a potential vorticity boundary condition

in the source region are first, that the circulation within the current has little effect
upon the front speed, c. Hacker explained the variation in front speed with rotation
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Figure 6. Across-stream depth of the current η(y) for δ = 0.5, 1.0 and 1.5, as a function of
the rotation rate. The edge of the current (where η(y) = 0) is marked by crosses.

by a simple argument based on continuity of volume flux. This same argument can
be used to explain why the front speed was not significantly altered by the inclusion
of potential vorticity (PV) upstream, since it is dependent upon the downstream
cross-sectional area of the ambient fluid. In the PV theory the depth profile and
the ambient fluid velocity remained approximately the same as that observed in the
energy-conserving theory of Hacker; therefore the volume flux across a downstream
cross section must be similar. This would demand the same speed of the oncoming
flow as in the energy-conserving theory of Hacker to ensure conservation of volume
flux.
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Secondly, a complex circulation was seen to develop within the current for δ = 0.5,
with cyclonic circulation nearest the right-hand wall and anticyclonic at the outer
edge of the current. These converged at η(y) = 0.5. This was explained using a simple
physical argument based on whether the flow experienced vortex compression or
stretching. For the cases δ = 1.0 and δ =1.5 the current experienced an anticyclonic
circulation, whilst the velocity of the ambient fluid showed similar trends to those of
the energy-conserving solutions of Hacker, i.e. with the Froude number tending to√

2 at the right-hand wall and 1 in the free stream at high rotation rates.
Thirdly, the numerical results indicate that a fourth flow geometry is possible for

small values of δ and, although it is hard to envisage how this flow might arise from
simple flow out of a reservoir, such solutions (with strong cyclonic vorticity) might
have practical applications.

The theory we have developed here to include uniform PV in the source has
provided an insight into the circulation which develops within the current. However,
varying the pre-set PV in the source region does not appear to have a substantial
effect upon the front speed or the other parameters which describe the flow. Therefore,
one may conclude that the theory of Hacker (with no pre-set PV in the source region)
provides an adequate description of the main features of the energy-conserving flow.
Similarly, this suggests that the energy dissipation theory presented in Part 1 – which
also assumes no shear within the current – is likely to give similar results for flow
speed and width as a more complicated theory which might (in principle) be developed
to include PV effects (in addition to energy dissipation).
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Appendix A. Derivation of the energy and momentum equations
Much of the detailed derivation of the equations needed to solve the dissipationless

and potential vorticity conserving flows has been omitted from the main text and is
given in this appendix.

A.1. Energy equations

In order to define the Bernoulli equations for the downstream flow in the ambient
fluid, for y ∈ [b, d] and y ∈ [d, 1], in terms of the principal variables, expressions for
the pressure pD(y) are required. First, the constant of integration k in the pressure
equations (2.24) and (2.25) is found: (2.24) is evaluated at y = 0 and the substitution
(2.27) is applied to give

k = − 1
2
uc(0)2 − 1 − (W 2/δW ′2)(η0 − (W 2/W ′2)). (A 1)

Hence (2.24) becomes, for y ∈ [b, d],

Pc(y) = − 1
2
uc(0)2 − (W 2/δW ′2)η0 + (W 4/δW ′4) − Wcy

− W [uc(0) − (W 2/δW ′2)(uc(0) − uD(0))]y −
(

1
2
W 4/W ′2)y2

+ (W 2/δW ′2)(η(y) − W 2/W ′2). (A 2)
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For the ambient fluid (2.25) for y ∈ [b, d] becomes

pD(y) = − 1
2
uc(0)2 − (W 2/δW ′2)η0 + (W 4/δW ′4) − Wcy

− W [uc(0) − (W 2/δW ′2)(uc(0) − uD(0))]y −
(

1
2
W 4/W ′2)y2

+ (W 2/δW ′2)(η(y) − (W 2/W ′2)) − η. (A 3)

In the free stream around the current η(d) = 0, hence the pressure at y ∈ [d, 1] is
obtained by first substituting (2.21) applied at y = d into (A 3) to give the boundary
condition

pD(d) = − 1
2
uc(0)2 − (W 2/δW ′2)η0 − Wcd

− W [uc(0) − (W 2/δW ′2)(uc(0) − uD(0))] d −
(

1
2
W 4/W ′2) d2. (A 4)

An expression for the pressure in the free stream is obtained by integrating the
geostrophic equation (2.11), which gives

pD(y) = −WUDy − Wcy + H.

Applying the above expression at y = d and equating with (A 4) enables the integration
constant H to be solved; hence

y ∈ [d, 1] :

pD(y) = WUD(d − y) − Wcy − 1
2
uc(0)2 − (W 2/δW ′2)η0

− W [uD(0) − (W 2/W ′2)(uc(0) − uD(0))] d −
(

1
2
W 4/W ′2) d2. (A 5)

Applying (A 5) at y =1 gives

pD(1) = WUD(d − 1) − Wc − 1
2
uc(0)2 − (W 2/δW ′2)η0

− W [uD(0) − (W 2/W ′2)(uc(0) − uD(0))] d −
(

1
2
W 4/W ′2) d2. (A 6)

It is now possible to write the expressions for conservation of energy in the ambient
fluid in terms of the principal variables and parameters defining the flow structure;
therefore substituting (A 3) into a Bernoulli equation gives

y ∈ [b, d] :

BD(y) = WcY (y) = 1
2
uD(y)2 − 1

2
uc(0)2 − (W 2/δW ′2)η0 + (W 4/δW ′4)

− W
[
uD(0) − (W 2/W ′2)(uc(0) − uD(0))y − 1

2
W 4/W ′2]y2

+ (W 2/δW ′2)((η0 − (W 2/W ′2)) coshW ′y

+ ((−W/W ′)(uc(0) − uD(0)) sinhW ′y) − η(y). (A 7)

Substituting (A 5) into a Bernoulli equation gives

y ∈ [d, 1] :

BD(y) = WcY (y) = 1
2
U 2

D + WUD(d − y) − 1
2
uc(0)2 − (W 2/δW ′2)η0

−W
[
uD(0) − (W 2/W ′2)(uc(0) − uD(0)) d − 1

2
W 4/W ′2] d2. (A 8)

Applying (A 8) at y = d and y = 1 the following relationship is obtained:

y ∈ [d, 1] :

BD(d) = BD(1) + WUD(1 − d). (A 9)
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At y = d, η =0 which according to (2.12) implies that Pc = pD , hence

BD(d) = 1
2
U 2

D + Pc(d) + Wcd

= 1
2

(
U 2

D − uc(d)2
)
. (A 10)

It is now possible to complete the expressions for conservation of energy in the
ambient fluid by first substituting (A 3) applied at y = b into (2.31), which becomes

BD(b) = 0 = 1
2
uD(b)2 − 1

2
uc(0)2 − (W 2/δW ′2)η0

− W (uc(0) − (W 2/W ′2)(uc(0) − uD(0)))b −
(

1
2
W 4/W ′2)b2 − δ/(1 + δ). (A 11)

Secondly BD(1) is calculated where Y (1) = 1. An equation which may be applied to
all the flow geometries is obtained by combining the expressions for BD(1) for case A
with that for cases B and C. The equation for case A is found by substituting (A 3)
applied at y =1 into (2.32). For cases B and C (A 6) is substituted into (2.32). The
resulting equation is

BD(1) = Wc = 1
2
uD(1)2 + WUD(d − 1) − 1

2
uc(0)2 − (W 2/δW ′2)η0

− W (uD(0) − (W 2/W ′2)(uc(0) − uD(0)))d −
(

1
2
W 4/W ′2)d2

+ (W 2/δW ′2)η(d) − η(d). (A 12)

According to (2.30)

− 1
2
uc(d)2 = Pc(d) + Wcd. (A 13)

Substituting (2.12) into (A 13) and noting (2.20), enables (A 12) to be simplified. It is
now possible to define c in terms of the principal variables,

c = W−1
[

1
2
uD(1)2 − 1

2
uc(d)2 + WUD(d − 1) − η(d)

]
. (A 14)

Equation (A 14), which is (2.40) in the main text, is the third equation required to
close the problem.

The conditions for y ∈ [b, d] are now considered. Substituting (2.14) into the
potential vorticity equation (2.8) enables it to be integrated between the limits
y ∈ [b, y]. The substitution (2.13) is then introduced and the expression is rearranged
to become

uD(y) + δuc(y) − Wδy = uD(b) + δuc(b) − Wδb, (A 15)

using

uc =
1

1 + δ
((uc − uD) + (uD + δuc)). (A 16)

The differential (2.13) replaces the first term in the brackets. To obtain a substitution
for the second term the following integral is considered and equated with (A 15) to
give

δ

∫ y

b

duc

dy
dy = δ(uc(y) − uc(b))

= uD(b) − uD(y) + Wδ(y − b).

The integral above enables a substitution for the second term in (A 16) to be obtained,

uc(y) =
1

1 + δ

(
− 1

W

dη

dy
+ Wδ(y − b) + (uD(b) + δuc(b))

)
. (A 17)
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Integrating (A 17) between the limits y ∈ [b, d] gives∫ d

b

uc(y) dy =
1

1 + δ

[
+

η(b) − η(y)

W
+ Wδ

(
1
2
(d2 − b2) − db + b2

)
+ (d − b)(uD(b) + δuc(b))

]
(A 18)

Equation (A 18) enables the geostrophic equation (2.10) to be integrated to become

Pc(d) − Pc(b) = −(d − b)

{
Wc +

W

1 + δ
(uD(b) + δuc(b))

}

− 1

1 + δ

{
η(b) − η(y) + W 2δ

(
1
2
(d − b)2

)}
. (A 19)

Substituting (2.12) applied at y = b and (2.39), into the Bernoulli function (2.31), yields

Pc(b) = − 1
2
u2

c(b) − Wb

δ
uc(b) − W 2b2 1 − δ

2δ2
− Wcb. (A 20)

Rearranging the Bernoulli function (A 10) gives

Pc(d) = − 1
2
u2

c(d) − Wcd. (A 21)

Evaluating the difference between (A 21) and (A 20) gives

Pc(d) − Pc(b) = 1
2

(
u2

c(b) − u2
c(d)

)
+

Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
+ Wc(b − d). (A 22)

Equating (A 22) with the previous expression for Pc(d) − Pc(b), (A 19), results in the
fourth general equation required to close the problem, which is (2.41) in the main text,

1
2

(
u2

c(d)−u2
c(b)

)
=

(d −b)

(1+δ)
(W (uD(b)+δuc(b)))+

1

1+δ

(
η(b)−η(d)+ 1

2
W 2δ(d −b)2

)
+

Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
. (A 23)

A.2. Momentum equation

The solution of the momentum equation (2.44) involves the evaluation of a number
of integrals:

1
2
c2 =

∫
Ac

(
u2

c + pc

)
dA +

∫
Aa

(
u2

D + pD

)
dA + W

∫
Vc

vc dV + W

∫
Va

vD dV.

For convenience this is broken down into a number of steps.

Step 1: The terms within the double integrals in (2.44) associated with the current
and the ambient fluid are integrated as follows.

Current The velocity term in the first integral becomes∫
Ac

u2
c dA =

∫ d

0

∫ 1

1−η

u2
c dz dy =

∫ b

0

u2
c dy +

∫ d

b

u2
cη dy. (A 24)

The substitution (2.9) is used to replace the pressure term in the first integral and it
is integrated to give∫

Ac

pc dA =

∫ d

0

∫ 1

1−η

(Pc + z − 1) dz dy

=

∫ b

0

Pc dy +

∫ d

b

(
Pcη − 1

2
η2

)
dy − 1

2
b. (A 25)
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The third integral, which describes the Coriolis force associated with the across-stream
flow within the current, is simplified using the physical argument that since the flow
is recirculating and there is no flux into or out of the current, then the volume flux
across a vertical plane at y must be equivalent to Qc(0; y). The substitution (2.29) is
also applied, resulting in

W

∫
Vc

vc dV = W

∫ d

0

Qc(y) dy = −δ

∫ d

0

B(y) dy. (A 26)

Ambient fluid The second integral in (2.44) is associated with the downstream ambient
fluid. This is integrated with respect to z, then (Part 1: (2.28)), applied downstream,
is substituted to give∫

Aa

(
u2

D + pD

)
dA =

∫ 1

b

BD(y) + 1
2
u2

D − Wcy − η
(
u2

D + pD

)
dy. (A 27)

The fourth integral, which concerns the flow of the ambient fluid around the head of
the current, is evaluated using (Part 1: (2.25)), (Part 1: (2.26)) and (Part 1: (2.27)) to
give

W

∫
Va

vD dV = 1
2
Wcb2 +

∫ 1

b

(Wcy − BD(y)) dy. (A 28)

Adding (A 27) and (A 28) the Bernoulli terms cancel and the expression for the
ambient fluid becomes∫

Aa

(
u2

D + pD

)
dA +W

∫
Va

vD dV =

∫ d

b

(
1
2
u2

D − ηu2
D − ηpD

)
dy + 1

2
U 2

D(1 − d) + 1
2
Wcb2.

(A 29)

Step 2: In the energy-conserving theory for simple flow the velocity of the current
equalled zero, therefore the momentum integral consisted of the second and forth
integrals in (2.44), plus the integral describing the cross-sectional pressure acting on
the current. Hence adding (A 29) to (A 25) gives∫

Aa

(
u2

D + pD

)
dA + W

∫
Va

vD dV +

∫
Ac

pc dA =

∫ b

0

Pc dy +

∫ d

b

(
1
2
u2

D − ηu2
D + 1

2
η2

)
dy

+ 1
2
U 2

D(1 − d) + 1
2
Wcb2 − 1

2
b. (A 30)

Step 3: The sum of the remaining terms in (2.44) for the current equals (A 24) plus
(A 26), which gives∫

Ac

u2
c dA + W

∫
Vc

vc dV =

∫ b

0

u2
c − δBc(y) dy +

∫ d

b

u2
cη − δBc(y) dy. (A 31)

The first term in the second integral is integrated by parts using the relationship
obtained in the derivation of (2.29)

− δ

W

dBc

dy
= ηuc. (A 32)

Then the substitution (2.7) is applied, hence (A 31) becomes∫
Ac

u2
c dA+W

∫
Vc

vc dV =

∫ b

0

u2
c −δBc(y) dy+

∫ d

b

−ηBc(y) dy −
[

δ

W
ucBc(y)

]d

b

. (A 33)
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Step 4: By combining (A 30) and (A 33) the momentum integral (2.44) becomes∫ b

0

(
Pc + u2

c − δBc(y)
)
dy +

∫ d

b

(
1
2
u2

D + 1
2
η2 − ηBc(y)

)
dy

−
[

δ

W
ucBc(y)

]d

b

+ 1
2
U 2

D(1 − d) + 1
2
Wcb2 − 1

2
b = 1

2
c2. (A 34)

Step 5: The Bernoulli function (2.26) is used to remove the pressure term in the first
integral above. This integral is then solved using two substitutions of (2.7), and (A 32)
(noting that η = 1 where y ∈ [0, b]). Hence, the first integral in (A 34) becomes∫ b

0

(
Pc + u2

c − δBc(y)
)
dy =

δ

W

[
u3

c

6(1 − δ)
− ucBc(y)

]b

0

− 1
2
Wcb2. (A 35)

The second integral in (A 34) is solved as follows: the substitution (2.13) is applied to
the first two terms; (2.8) is used to express the third term as an exact differential; the
fourth term is integrated by parts making use of (2.8) and (A 32). Hence the second
integral becomes∫ d

b

(
1
2
u2

D + 1
2
η2 − ηu2

D − ηBc(y)
)
dy =

∫ d

b

(
1
2
uDuc − η

δ
uDuc

)
dy

+
1

W

[
1
2
uDη − 1

3
u3

D − uDBc(y)
]d

b
. (A 36)

The second term in the remaining integral is simplified further by: substituting a
differential for η using (2.7); integrating by parts; substituting the potential vorticity
equations (2.8) and (2.7). Hence, the momentum integral (A 34) becomes∫ d

b

1
2
(−uc(uD + δuc)) dy +

1

W

[
δ

6(1 − δ)
u3

c − δucBc

]b

0

+
1

W

[
1
6
δu3

c + 1
2
u2

cuD − 1
3
u2

D

+ 1
2
uDη − δucBc(y) − uDBc(y)

]d

b
+ 1

2
U 2

D(1 − d) − 1
2
b = 1

2
c2. (A 37)

There does not exist an exact differential, which could be used as a substitution to
solve the final integral. However, a solution is possible by substituting the velocity
equations (2.25) and (2.26) into the respective terms and integrating directly to give∫ d

b

1
2
(−uc(uD + δuc)) dy

=

∫ d

b

− 1
2
uc(uD(0) + δuc(0) + Wδy) dy

=
[
y((uc(0)uD(0))(−(W 2/W ′2)) + 1

2
uD(0)2(−(W 2/δW ′2)) + 1

2
uc(0)2((W 2/W ′2) − δ))

+ y2
(

1
4
(uc(0))(−Wδ + (W 3/W ′2) − δ(W 3/W ′2)) + 1

2
uD(0)(−(W 3/W ′2))

)
+ y3

(
− 1

6
(W 4/W ′2)δ

)
+ λ

(
− 1

2
(W 2/W ′2)

)
+ λ′( 1

2
uD(0)(W/δW ′2) + 1

2
uc(0)(W/W ′2)

)
+ 1

2
yλ′(W 2/W ′2)

]d

b
, (A 38)

where λ= W −1((η0 − (W 2/W ′2)) sinh W ′y + (−(W/W ′)(uc(0) − uD(0)) cosh W ′y)) and
λ′ =dλ/dy.

To clarify the momentum equation (A 37), first, the cross-product terms 1
2
u2

cuD and
uDBc(y) are replaced using (2.26), (Part 1:(2.28)) and (2.12), to give

1
2
u2

cuD − uDBc(y) = 1
2
u3

D − uDBD(y) − uDη.
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Secondly, the terms within the brackets are rearranged to refer to either the current
or the ambient fluid. Note that for y ∈ [0, d] Bc = 0, according to (2.27). Hence, the
general solution to the momentum equation (2.44) becomes

1
2
c2 =

∫ d

b

1
2
(−uc(uD + δuc)) dy +

1

W

[
δ2

6(1 − δ)
u3

c

]b

0

+

[
δ

6W
u3

c

]d

0

+
1

W

[
1
6
u3

D − 1
2
uDη − uDBD(y)

]d

b
+ 1

2
U 2

D(1 − d) − 1
2
b (A 39)

where the integral in (A 39) is given by (A 38). Note that, for y ∈ [0, b], BD = 0 and
at y = d, BD = W (c + (1 − d)UD) where (2.32) is substituted into (A 9). The equation
(A 39) is the final general equation required to close the problem, which is (2.45) in
the main text.

As a check we can show that the general solution for the momentum integral
reduces to that for the energy-conserving model with simple flow, by considering the
case uc = 0. The assumption of zero velocity for the current will affect the derivation
of the ambient fluid pressure and consequently the Bernoulli function BD(y) in (A 39).
Substituting uc =0 into the geostrophic equation (2.10), the dependent ambient fluid
pressure for y ∈ [b, d] becomes Part 1: (2.16). Therefore, the Bernoulli function applied
downstream becomes (for y ∈ [b, d])

BD = 1
2
u2

D − η (A 40)

Substituting (A 40) and uc =0 into (A 39) gives

c2 =
1

W

[
− 2

3
u3

D + uDη
]d

b
+ U 2

D(1 − d) − b. (A 41)

The above expression is equivalent to Part 1: (3.4) without the energy-loss terms (see
the discussion of that equation in Part 1).

Appendix B. Governing equations and solutions for each flow geometry
To solve the equations we consider each of the flow geometries in turn, applying

the appropriate boundary conditions and obtaining versions of the general equations
appropriate to each of the cases. First we give the final equations for each of the
cases.

B.1. Case A

Case A corresponds to a weak rotation rate, where the current continues to fill the full
width of the channel. Thus this case has b =0 and d = 1 and the governing equations
become:

Momentum equation

1
2
c2 =

∫ 1

0

1
2
(−uc(uD + δuc)) dy +

δ

6W
(uc(1)3 − uc(0)3)

+
1

W

[
1
6
(uD(1)3 − uD(0)3) + 1

2
(uD(1)η(1) − uD(0)η(0))

]
− uD(1)c (B 1)

and to evaluate the integral in (B1) it is necessary to substitute the expressions for
the flow structure and then integrate (see Appendix A);

Bernoulli equations

η0 = 1
2
uD(0)2 − 1

2
uc(0)2. (B 2)
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c =
1

W

[
1
2
uD(1)2 − 1

2
uc(1)2 − η(1)

]
(B 3)

1
2

(
u2

c(1) − u2
c(0)

)
=

W

(1 + δ)
(uD(0) + δuc(0)) +

1

1 + δ

(
η(0) − η(1) + 1

2
W 2δ

)
; (B 4)

Flow structure equations

η(1) = δ/(1 + δ) + (η0 − δ/(1 + δ)) cosh W ′ + (−(W/W ′)(uc(0) − uD(0))) sinh W, (B 5)

uc(1) = uc(0) − (W 2/δW ′2)(uc(0) − uD(0)) + W (δ/(1 + δ)) − (W/δW ′)

× [(η0 − δ/(1 + δ)) sinh W ′ + (−(W/W ′)(uc(0) − uD(0))) cosh W ′], (B 6)

uD(1) = uD(0) + (W 2/W ′2)(uc(0) − uD(0)) + W (δ/(1 + δ))

+(W/W ′)[(η0 −δ/(1+δ)) sinh W ′ +(−(W/W ′)(uc(0)−uD(0))) cosh W ′]. (B 7)

B.2. Case B

Case B corresponds to a moderate rotation rate, where the current banks up against
the right-hand wall and outcrops on the surface at y = d. Note that there is no shear
in the free stream since η(y) = 0 for y ∈ [d, 1]. The conditions for case B are b = 0 and
d < 1 and the general equations become:

momentum equation

1
2
c2 =

∫ d

0

1
2
(−uc(uD + δuc)) dy +

δ

6W
(uc(d)3 − uc(0)3) +

1

W

[
1
6

(
U 3

D − uD(0)3
)

− 1
2
uD(0)η(0) − 1

2

(
U 3

D − UDuc(d)2
)]

+ 1
2
U 2

D(1 − d), (B 8)

again substituting from the flow structure equations to evaluate the integral;

Bernoulli equations

η0 = 1
2
uD(0)2 − 1

2
uc(0)2, (B 9)

c = W 1
[

1
2
U 2

D − 1
2
uc(d)2 + WUD(d − 1)

]
, (B 10)

1
2

(
u2

c(d) − u2
c(0)

)
=

Wd

(1 + δ)
(uD(0) + δuc(0)) +

1

1 + δ

(
η(0) + 1

2
W 2δd2

)
; (B 11)

flow structure equations

η(d) = 0 = δ/(1 + δ) + (η0 − δ/(1 + δ)) coshW ′d

+ (−(W/W ′)(uc(0) − uD(0))) sinh W ′d, (B 12)

uc(d) = u0c − (W 2/δW ′2)(uc(0) − uD(0)) + W (δ/(1 + δ)) d

− (W/δW ′)[(η0 − δ/(1 + δ)) sinh W ′d

+ (−(W/W ′)(uc(0) − uD(0))) cosh W ′d], (B 13)

uD(d) = UD = u0D + (W 2/W ′2)(uc(0) − uD(0)) + W (δ/(1 + δ)) d

+ (W/W ′)[(η0 − δ/(1 + δ)) sinh W ′d

+ (−(W/W ′)(uc(0) − uD(0))) cosh W ′d]. (B 14)

B.3. Case C

Case C corresponds to a strong rotation rate, where the current has banked up against
the right-hand wall to such an extent that it fills the full depth of the channel and
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outcrops on the bottom boundary at y = b. The conditions for case C are 0< b < d < 1
and the general equations for case C become:

momentum equation

1
2
c2 =

∫ d

b

1
2
(−uc(uD + δuc)) dy +

δ2

W6(1 − δ)
(uc(b)3 − uc(0)3) +

δ

6W
(uc(d)3 − uc(0)3)

+
1

W

[
1
6

(
U 3

D −uD(b)3
)

− 1
2
uD(b)− 1

2

(
U 3

D −uc(d)2UD

)]
+ 1

2
UD(1 − d) − 1

2
b (B 15)

again substituting from the flow structure equations to evaluate the integral;

Bernoulli equations

1
2
u2

D(b) = 1
2
u2

c(b) +
Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
+ 1, (B 16)

c =
1

W

[
1
2
U 2

D − 1
2
uc(d)2 + WUD(d − 1)

]
, (B 17)

1
2

(
u2

c(d) − u2
c(b)

)
=

d − b

1 + δ
(W (uD(b) + δuc(b))) +

1

1 + δ

(
η(b) + 1

2
W 2δ(d − b)2

)
+

Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
; (B 18)

flow structure equations

uC(0) = uC(b) + W [(δ − 1)/δ](−b), (B 19)

uc(d) = uC(b) − (W 2/δW ′2)(uc(b) − uD(b)) + W (δ/(1 + δ))d

− (W/δW ′)[(η0 − δ/(1 + δ)) sinhW ′(d − b)

+ (−(W/W ′)(uc(b) − uD(b))) cosh W ′(d − b)], (B 20)

uD(d) = UD = uD(b) + (W 2/W ′2)(uc(b) − uD(b)) + W (δ/(1 + δ))d

+(W/W ′)[(η0 − δ/(1 + δ)) sinhW ′(d − b)

+ (−(W/W ′)(uc(b) − uD(b))) cosh W ′(d − b)], (B 21)

and note η0 = η(b) = 1, while η(d) = 0.

B.4. Case BII

In evaluating the numerical solutions it became clear that a fourth flow geometry was
possible, with the current occupying a substantial part of the channel and the interface
intercepting the left-hand wall (looking downstream with respect to the current) and
the bottom of the channel. This case was labelled BII, and the conditions for this
case are b > 0 and d = 1, the general equations for case BII become:

momentum equation

1
2
c2 =

∫ 1

b

1
2
(−uc(uD + δuc)) dy +

δ2

W6(1 − δ)
(uc(b)3 − uc(0)3) +

δ

6W
(uc(1)3 − uc(0)3)

+
1

W

[
1
6
(uD(1)3 −uD(b)3)+ 1

2
uD(1)ηD(1)− 1

2
uD(b)− 1

2
(uD(1)3 −uc(1)2uD(1))

]
− 1

2
b,

(B 22)
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again substituting from the flow structure equations to evaluate the integral;

Bernoulli equations

1
2
u2

D(b) = 1
2
u2

c(b) +
Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
+ 1, (B 23)

c =
1

W

[
1
2
uD(1)2 − 1

2
uc(1)2 − η(1)

]
, (B 24)

1
2

(
u2

c(1) − u2
c(b)

)
=

1 − b

1 + δ
(W (uD(b) + δuc(b))) +

1

1 + δ

(
η(b) − η(1) + 1

2
W 2δ(1 − b)2

)
+

Wb

δ
uc(b) + W 2b2 1 − δ

2δ2
; (B 25)

flow structure equations

η(1) = δ/(1 + δ) + (η(b) − δ/(1 + δ)) coshW ′(1 − b)

+ (−(W/W ′)(uc(b) − uD(b))) sinh W ′(1 − b). (B 26)

uc(0) may be found as in case C using equation (B19), while uc(1) and uD(1) may be
found as in case C, substituting d = 1 in equation (B 20) and (B 21), note also that
η0 = η(b) = 1.

B.5. Numerical solutions

While in principle we are solving four equations in four unknowns, in practice the set
of equations and unknowns solved for numerically varied between the different cases
as follows. For case A, three unknowns were used, the flow speeds in the current and
the ambient fluid at the right-hand wall, uc(0) and uD(0), and the current speed c.
The three equations used were (B 1), (B 3) and (B 4), with η(0) substituted into them
using (B 2). For case B a fourth unknown, the position of the surface outcropping, d ,
was added and the equations corresponded to those used for case A: equations (B 8),
(B 10) and (B 11) were used, with η(0) substituted using equation (B 9). The fourth
equation used for case B was the flow structure equation (B 12).

In case C it was more convenient to use five equations in five unknowns. The
unknowns were uc(b), uD(b), c, b, and d . The five equations were (B 15), (B 16), (B 17)
and (B 18), together with an expression for η(d) = 0 (similar to equation (B 12), but
with (d − b) instead of d). For case BII, a similar set of unknowns and equations was
used as for case C, except now d = 1, leaving the other four unknowns uc(b), uD(b),
c, and b. The equations were (B 22), (B 23), (B 24) and (B 25).

The simultaneous equations were solved for each case using a Fortran programme
and standard NAG routines. In order to get convergence of the numerical scheme
an initial guess sufficiently close to the final answer is required. This required some
manual intervention and intelligent guesswork, especially for the small δ cases.

REFERENCES

Csanady, G. T. 1971 On the equilibrium shape of the thermocline in a shore zone. J. Phys. Oceanogr.
1, 263–270.

Hacker, J. N. 1996 Gravity currents in rotating channels. PhD thesis, University of Cambridge.

Hacker, J. N. & Linden, P. F. 2002 Gravity currents in rotating channels. Part 1. Steady-state
theory. J. Fluid Mech. 457, 295–324.

van Heijst, G. J. F. 1985 Geostrophic adjustment model of tidal mixing front. J. Phys. Oceanogr.
15, 1182–1190.



Rotating gravity currents. Part 2 89

Hsueh, Y. & Cushman-Roisin, B. 1983 On the formation of surface to bottom fronts over steep
topography. J. Geophys. Res. 88, 743–750.

Martin, J. R. & Lane-Serff, G. F. 2004 Rotating gravity currents. Part 1. Energy loss theory.
J. Fluid Mech. 000, 000–000.

Moncrieff, M. W. & So, D. W. K. 1989 A hydrodynamical theory of conservative bounded density
currents. J. Fluid Mech. 198, 177–197.

Ou, H. W. 1983 Some two-layer models of shelf-slope front: geostrophic adjustment and its
maintenance. J. Phys. Oceanogr. 13, 1798–1808.

Stommel, H. & Veronis, G. 1980 Barotrophic response to cooling. J. Geophys. Res. 85, 6661–6666.


